Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Clin Cancer Inform ; 4: 811-821, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946287

RESUMO

PURPOSE: Applications of deep learning to histopathology have proven capable of expert-level performance, but approaches have largely focused on supervised classification tasks requiring context-specific training and deployment. More generalizable workflows that can be easily shared across subspecialties could help accelerate and broaden adoption. Here, we hypothesized that histology-optimized feature representations, generated by a convolutional neural network (CNN) during supervised learning, are transferable and can resolve meaningful differences in large-scale, discovery-type unsupervised analyses. METHODS: We used a CNN, previously trained to recognize brain tumor histomorphologies, to extract 512 feature representations from > 550 digital whole-slide images (WSIs) of renal cell carcinomas (RCCs) from The Cancer Genome Atlas and other previously unencountered tumors. We use these extracted feature vectors to conduct unsupervised image-set clustering and analyze the clinical and biologic relevance of the intra- and interpatient subgroups generated. RESULTS: Within individual WSIs, feature-based clustering could reliably segment tumor regions and other relevant histopathologic subpatterns (eg, adenosquamous and poorly differentiated regions). Across the larger RCC cohorts, clustering extracted features generated subgroups enriched for clinically relevant subtypes (eg, papillary RCC) and outcomes (eg, survival). Importantly, individual feature activation mapping highlighted salient subtype-specific patterns and features of malignancies (eg, nuclear grade, sarcomatous change) contributing to subgroupings. Moreover, some proposed clusters were enriched for recurring, human-based RCC-subtype misclassifications. CONCLUSION: Our data support that CNNs, pretrained on large histologic datasets, can extend learned representations to novel scenarios and resolve clinically relevant intra- and interpatient tissue-pattern differences without explicit instruction or additional optimization. Repositioning of existing histology-educated networks could provide scalable approaches for image classification, quality assurance, and discovery of unappreciated patterns and subgroups of disease.


Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Recidiva Local de Neoplasia , Redes Neurais de Computação
2.
Surg Pathol Clin ; 13(2): 349-358, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32389272

RESUMO

Applications of artificial intelligence and particularly deep learning to aid pathologists in carrying out laborious and qualitative tasks in histopathologic image analysis have now become ubiquitous. We introduce and illustrate how unsupervised machine learning workflows can be deployed in existing pathology workflows to begin learning autonomously through exploration and without the need for extensive direction. Although still in its infancy, this type of machine learning, which more closely mirrors human intelligence, stands to add another exciting layer of innovation to computational pathology and accelerate the transition to autonomous pathologic tissue analysis.


Assuntos
Patologia Clínica/métodos , Aprendizado de Máquina não Supervisionado , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/patologia , Aprendizado Profundo , Humanos , Interpretação de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...